Procollagen C-proteinase Enhancer Stimulates Procollagen Processing by Binding to the C-propeptide Region Only*
نویسندگان
چکیده
Bone morphogenetic protein-1 (BMP-1) and the tolloid-like metalloproteinases control several aspects of embryonic development and tissue repair. Unlike other proteinases whose activities are regulated mainly by endogenous inhibitors, regulation of BMP-1/tolloid-like proteinases relies mostly on proteins that stimulate activity. Among these, procollagen C-proteinase enhancers (PCPEs) markedly increase BMP-1/tolloid-like proteinase activity on fibrillar procollagens, in a substrate-specific manner. Here, we performed a detailed quantitative study of the binding of PCPE-1 and of its minimal active fragment (CUB1-CUB2) to three regions of the procollagen III molecule: the triple helix, the C-telopeptide, and the C-propeptide. Contrary to results described elsewhere, we found the PCPE-1-binding sites to be located exclusively in the C-propeptide region. In addition, binding and enhancing activities were found to be independent of the glycosylation state of the C-propeptide. These data exclude previously proposed mechanisms for the action of PCPEs and also suggest new mechanisms to explain how these proteins can stimulate BMP-1/tolloid-like proteinases by up to 20-fold.
منابع مشابه
Procollagen C-proteinase enhancer grasps the stalk of the C-propeptide trimer to boost collagen precursor maturation.
Tight regulation of collagen fibril deposition in the extracellular matrix is essential for normal tissue homeostasis and repair, defects in which are associated with several degenerative or fibrotic disorders. A key regulatory step in collagen fibril assembly is the C-terminal proteolytic processing of soluble procollagen precursors. This step, carried out mainly by bone morphogenetic protein-...
متن کاملNMR structure of the netrin-like domain (NTR) of human type I procollagen C-proteinase enhancer defines structural consensus of NTR domains and assesses potential proteinase inhibitory activity and ligand binding.
Procollagen C-proteinase enhancer (PCOLCE) proteins are extracellular matrix proteins that enhance the activities of procollagen C-proteinases by binding to the C-propeptide of procollagen I. PCOLCE proteins are built of three structural modules, consisting of two CUB domains followed by a C-terminal netrin-like (NTR) domain. While the enhancement of proteinase activity can be ascribed solely t...
متن کاملEffects of the absence of procollagen C-endopeptidase enhancer-2 on myocardial collagen accumulation in chronic pressure overload.
Cardiac interstitial fibrillar collagen accumulation, such as that associated with chronic pressure overload (PO), has been shown to impair left ventricular diastolic function. Therefore, insight into cellular mechanisms that mediate excessive collagen deposition in the myocardium is pivotal to this important area of research. Collagen is secreted as a soluble procollagen molecule with NH(2)- a...
متن کاملData comparing the kinetics of procollagen type I processing by bone morphogenetic protein 1 (BMP-1) with and without procollagen C-proteinase enhancer 1 (PCPE-1)
This article provides kinetic constants for C-terminal processing of procollagen type I by bone morphogenetic protein 1 (BMP-1; the major procollagen C-proteinase), a reaction stimulated by the connective tissue glycoprotein procollagen C-proteinase enhancer 1 (PCPE-1). Reported are Km , Vmax , Kcat and Kcat /Km (catalytic coefficient) values for BMP-1 alone, BMP-1 with intact PCPE-1, BMP-1 wit...
متن کاملFormation of collagen fibrils in vitro by cleavage of procollagen with procollagen proteinases.
A new system was developed for studying the assembly of collagen fibrils in vitro. A partially purified enzyme preparation containing both procollagen N-proteinase and c-proteinase (EC 3.4.24.00) activities was used to initiate fibril formation by removal of the N- and C-propeptides from type I procollagen in a physiological buffer at 35-37 degrees C. The kinetics of fibril formation were simil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 286 شماره
صفحات -
تاریخ انتشار 2011